Algebraic Geometry Lecture 5 — Local Rings of Varieties

Joe Grant!

Def™. A variety over k = k is any affine, quasi-affine, projective, or quasi-projective
variety.

Notation: k[X] = k[Xq,...,X,]

Recall, the coordinate ring k[V] of an affine variety V is
klV]={f:V — k| f is a polynomial function} = k[X]/I(V).

Def®. f:V — k is regular at P € V if there exists an open neighbourhood U
with P € U C V and there exist g, h € k[X] such that f = g/h on U and h(Q) # 0
forall Q € U.

Lemma. A regular function on a (quasi-) affine variety is continuous in the Zariski
topology (where k is identified with Al).

Proof. We need to show f~1(S) is open for all open sets S. Equivalently that
f7Y(T) is closed for all closed sets T

A closed set in k(= A!) is a finite collection of points. So if we can show the
preimage of a point is closed then we’re done, as the union is finite. This would be
easy if we could write f = g/h everywhere, but we can’t. We’ll use a lemma from
topology: a set T C A is closed iff T can be covered by open subsets U such that
T NU is closed in U for each U.

Let U be an open set on which f = g/h for g, h € k[X]. Then

fHa)nU ={PeU|g(P)/n(P) = a}.
But g(P)/h(P) = a iff (¢ — ah)(P) =0. So
fHa)nU = Z(g —ah)NU,

where Z(-) is the zero set, our “V” from previous lectures. This is closed by
definition, hence f~1(a) is closed, thus so is f~1(T). O

We can also prove this with projective varieties.

We use O(V) to mean the regular functions on V.
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Def™. Let V be a variety and P be a point in V. Define the local ring of V' at P,
denoted Opy to be

Op,V:{f:U—>k|UCVisopen,PEU,fisregularonU}/w

where f:U - k~g: W > kiff f=gon UNW. (If V is clear from the context
then we write Opy = Op.)

We require ~ to be an equivalence relation. It is clearly reflexive and symmetric,
so we just need to check transitivity. Suppose f ~ g and g ~ h with f : U — k,
g: W =k h:X —k Then f=gonUNW and g = hon WnNX. We want

unw
to show thath f = hon UNX. Note that asUNW NX C {WﬂX we have

f=honUNWNX. Sof-—h=0onUNWnNX. {0} € Z(x) is closed in A
so by the lemma (f — h)~1(0) is a closed set in UNW N X. As W is open in V
it is dense in V so (f — h)~1(0) is dense in U N X. But (f — h)~1(0) is closed so
(f=h)H0)=UNX.So(f—h)(UNX)=0,s0 f=honUnNX.

Op is a commutative ring, we define addition on open intersections. So Op/
m = k where m is a maximal ideal. Our choice of m is the set of equivalence classes
of regular functions vanishing at P. (Unique up to isomorphism.)

Def™. We define the function field £(V') to be
E(V)={f:U —k|U CV is an open subset, f is regular on U}/ ~

with ~ as before. We call elements of k(V') rational functions on V.

Note that k(V) is a field: as V is irreducible any two non-empty open subsets
have a non-empty intersection. So we can define addition and multiplication on
them. Also, if f is defined on U then we can define 1/f on U\ (UNZ(f)) on which
1/f is regular.

So we have, by restriction of functions,
O(V) = Op = k(V),
for Pe V.

These are invariants of V, P. We will relate these to the affine coordinate ring
E[V] 2 E[X]/I(V).

Theorem. (a) For each P €V if we let mp be the ideal of functions vanishing
at P, then P — mp gives a 1-1 correspondence between points of V' and
mazximal ideals of k[V].

(b) For each P €V, Op 2 k[V]m, where k[V|m, is the localisation of k[V] at
mp, essentially assigning formal inverses.

(¢) k(V) is isomorphic to quotient fields of k[V].

(d) O(V) = k[V].

In the projective case we need various modifications. For Y a projective variety
with coordinate ring S(Y"),



k. (Different to Al)
(Y)mp. (Similar.)
S(Y)(0). (Similar.)



