
Algebraic Geometry Lecture 5 – Local Rings of Varieties

Joe Grant1

Def n. A variety over k = k is any affine, quasi-affine, projective, or quasi-projective
variety.

Notation: k[X] = k[X1, . . . , Xn].

Recall, the coordinate ring k[V ] of an affine variety V is

k[V ] = {f : V → k | f is a polynomial function} ∼= k[X]/I(V ).

Def n. f : V → k is regular at P ∈ V if there exists an open neighbourhood U
with P ∈ U ⊆ V and there exist g, h ∈ k[X] such that f = g/h on U and h(Q) 6= 0
for all Q ∈ U .

Lemma. A regular function on a (quasi-) affine variety is continuous in the Zariski
topology (where k is identified with A1).

Proof. We need to show f−1(S) is open for all open sets S. Equivalently that
f−1(T ) is closed for all closed sets T .

A closed set in k(= A1) is a finite collection of points. So if we can show the
preimage of a point is closed then we’re done, as the union is finite. This would be
easy if we could write f = g/h everywhere, but we can’t. We’ll use a lemma from
topology: a set T ⊂ A1 is closed iff T can be covered by open subsets U such that
T ∩ U is closed in U for each U .

Let U be an open set on which f = g/h for g, h ∈ k[X]. Then

f−1(a) ∩ U = {P ∈ U | g(P )/h(P ) = a}.
But g(P )/h(P ) = a iff (g − ah)(P ) = 0. So

f−1(a) ∩ U = Z(g − ah) ∩ U,

where Z(·) is the zero set, our “V ” from previous lectures. This is closed by
definition, hence f−1(a) is closed, thus so is f−1(T ). �

We can also prove this with projective varieties.

We use O(V ) to mean the regular functions on V .

1Notes typed by Lee Butler based on a lecture given by Joe Grant. Any errors are the respon-
sibility of the typist. Or Andrew Potter, the scoundrel.
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Def n. Let V be a variety and P be a point in V . Define the local ring of V at P ,
denoted OP,V to be

OP,V = {f : U → k | U ⊂ V is open, P ∈ U, f is regular on U}
/
∼

where f : U → k ∼ g : W → k iff f = g on U ∩W . (If V is clear from the context
then we write OP,V = OP .)

We require ∼ to be an equivalence relation. It is clearly reflexive and symmetric,
so we just need to check transitivity. Suppose f ∼ g and g ∼ h with f : U → k,
g : W → k, h : X → k. Then f = g on U ∩W and g = h on W ∩ X. We want

to show thath f = h on U ∩X. Note that as U ∩W ∩X ⊆

{
U ∩W

W ∩X
we have

f = h on U ∩W ∩ X. So f − h = 0 on U ∩W ∩ X. {0} ∈ Z(x) is closed in A1

so by the lemma (f − h)−1(0) is a closed set in U ∩W ∩ X. As W is open in V
it is dense in V so (f − h)−1(0) is dense in U ∩X. But (f − h)−1(0) is closed so
(f − h)−1(0) = U ∩X. So (f − h)(U ∩X) = 0, so f = h on U ∩X.

OP is a commutative ring, we define addition on open intersections. So OP /
m = k where m is a maximal ideal. Our choice of m is the set of equivalence classes
of regular functions vanishing at P . (Unique up to isomorphism.)

Def n. We define the function field k(V ) to be

k(V ) = {f : U → k | U ⊂ V is an open subset, f is regular on U}
/
∼

with ∼ as before. We call elements of k(V ) rational functions on V .

Note that k(V ) is a field: as V is irreducible any two non-empty open subsets
have a non-empty intersection. So we can define addition and multiplication on
them. Also, if f is defined on U then we can define 1/f on U \ (U ∩Z(f)) on which
1/f is regular.

So we have, by restriction of functions,

O(V ) ↪→ OP ↪→ k(V ),

for P ∈ V .

These are invariants of V, P . We will relate these to the affine coordinate ring
k[V ] ∼= k[X]/I(V ).

Theorem. (a) For each P ∈ V if we let mP be the ideal of functions vanishing
at P , then P 7→ mP gives a 1-1 correspondence between points of V and
maximal ideals of k[V ].

(b) For each P ∈ V , OP
∼= k[V ]mP

where k[V ]mP
is the localisation of k[V ] at

mP , essentially assigning formal inverses.
(c) k(V ) is isomorphic to quotient fields of k[V ].
(d) O(V ) ∼= k[V ].

In the projective case we need various modifications. For Y a projective variety
with coordinate ring S(Y ),
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(a) O(Y ) ∼= k. (Different to A!)
(b) OP

∼= S(Y )mP
. (Similar.)

(c) k(Y ) ∼= S(Y )(0). (Similar.)


